Аксиоматическое Определение

Что такое «Аксиоматическое Определение» и что оно означает? Значение и толкование термина в словарях и энциклопедиях:

 

Словарь логики » Аксиоматическое Определение
 - определение термина через множество аксиом (постулатов), в которые он входит и кото­рые последовательно ограничивают область его возможных истол­кований. Напр., можно попытаться дать прямое определение понятия «равенство». Но можно привести систему истинных утверждений, включающих это понятие и неявно задающих его значение: «Каж­дый объект равен самому себе»; «В случае любых объектов, если первый равен второму, то второй равен первому»; «Для всех объек­тов верно, что если первый равен второму, а второй третьему, то первый равен третьему». А. о. является частным случаем определения контекстуального. Всякий отрывок текста, всякий контекст, в котором встречается интересующее нас понятие, является в некотором смысле неяв­ным определением последнего. Контекст ставит понятие в связь с другими понятиями и тем самым косвенно раскрывает его содер­жание. Встретив в тексте на иностранном языке одно-два неизве­стных слова, мы, понимая текст в целом, можем составить при­мерное представление и о значениях неизвестных слов. Аналогично дело обстоит и с А. о. Совокупность аксиом к.-л. теории является одновременно и свернутой формулировкой этой теории, и тем контекстом, который неявно определяет все входящие в аксиомы понятия. Чтобы узнать, к примеру, что значат слова «масса», «сила», «ус­корение» и т. п., можно обратиться к аксиомам классической меха­ники Ньютона. «Сила равна массе, умноженной на ускорение», «Сила действия равна силе противодействия» и т. д. — эти положения, указывая связи понятия «сила» с другими понятиями механики, раскрывают его сущность. Принципиальное отличие А. о. от иных контекстуальных опре­делений в том, что аксиоматический контекст строго ограничен и фиксирован. Он содержит все, что необходимо для понимания вхо­дящих в него понятий. Он ограничен по размеру и по составу. А. о. — одна из высших форм научного определения. Не всякая теория способна определить свои исходные термины аксиомати­чески, для этого требуется относительно высокий уровень разви­тия знаний об исследуемой области. Изучаемые объекты и их от­ношения должны быть также сравнительно просты.